1,372 research outputs found

    Towards a Hybrid Imputation Approach Using Web Tables

    Get PDF
    Data completeness is one of the most important data quality dimensions and an essential premise in data analytics. With new emerging Big Data trends such as the data lake concept, which provides a low cost data preparation repository instead of moving curated data into a data warehouse, the problem of data completeness is additionally reinforced. While traditionally the process of filling in missing values is addressed by the data imputation community using statistical techniques, we complement these approaches by using external data sources from the data lake or even the Web to lookup missing values. In this paper we propose a novel hybrid data imputation strategy that, takes into account the characteristics of an incomplete dataset and based on that chooses the best imputation approach, i.e. either a statistical approach such as regression analysis or a Web-based lookup or a combination of both. We formalize and implement both imputation approaches, including a Web table retrieval and matching system and evaluate them extensively using a corpus with 125M Web tables. We show that applying statistical techniques in conjunction with external data sources will lead to a imputation system which is robust, accurate, and has high coverage at the same time

    Building the Dresden Web Table Corpus: A Classification Approach

    Get PDF
    In recent years, researchers have recognized relational tables on the Web as an important source of information. To assist this research we developed the Dresden Web Tables Corpus (DWTC), a collection of about 125 million data tables extracted from the Common Crawl (CC) which contains 3.6 billion web pages and is 266TB in size. As the vast majority of HTML tables are used for layout purposes and only a small share contains genuine tables with different surface forms, accurate table detection is essential for building a large-scale Web table corpus. Furthermore, correctly recognizing the table structure (e.g. horizontal listings, matrices) is important in order to understand the role of each table cell, distinguishing between label and data cells. In this paper, we present an extensive table layout classification that enables us to identify the main layout categories of Web tables with very high precision. We therefore identify and develop a plethora of table features, different feature selection techniques and several classification algorithms. We evaluate the effectiveness of the selected features and compare the performance of various state-of-the-art classification algorithms. Finally, the winning approach is employed to classify millions of tables resulting in the Dresden Web Table Corpus (DWTC)

    FARSEC: A Reproducible Framework for Automatic Real-Time Vehicle Speed Estimation Using Traffic Cameras

    Full text link
    Estimating the speed of vehicles using traffic cameras is a crucial task for traffic surveillance and management, enabling more optimal traffic flow, improved road safety, and lower environmental impact. Transportation-dependent systems, such as for navigation and logistics, have great potential to benefit from reliable speed estimation. While there is prior research in this area reporting competitive accuracy levels, their solutions lack reproducibility and robustness across different datasets. To address this, we provide a novel framework for automatic real-time vehicle speed calculation, which copes with more diverse data from publicly available traffic cameras to achieve greater robustness. Our model employs novel techniques to estimate the length of road segments via depth map prediction. Additionally, our framework is capable of handling realistic conditions such as camera movements and different video stream inputs automatically. We compare our model to three well-known models in the field using their benchmark datasets. While our model does not set a new state of the art regarding prediction performance, the results are competitive on realistic CCTV videos. At the same time, our end-to-end pipeline offers more consistent results, an easier implementation, and better compatibility. Its modular structure facilitates reproducibility and future improvements

    Mevali bog’larda Komstok qurti (Pseudococcus Comstoki Kuw) qarshi karantin tadbirlarini ishlab chiqish (Andijon viloyati sharoitida)

    Get PDF
    Andijon viloyatida sharoitida olmaning karantin zararkunnadasi (Pseudococcus Comstoki Kuw) dan himoya qilish uchun mavsumda ishlov o‘tkazish, karantin tadbirlarini belgilash muddatlariga tayangan holda tizimda 35-40% xosildorlik saqlab qolish imkonini berdi

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
    corecore